From the abstract: "The amygdala represents a core node in the human brain's emotional signal processing circuitry. Given its critical role, both the typical and atypical functional connectivity patterns of the amygdala have been extensively studied in adults. However, the development of amygdala functional connectivity during infancy is less well studied; thus, our understanding of the normal growth trajectory of key emotion-related brain circuits during a critical period is limited.
In this study, we used resting-state functional magnetic resonance imaging (N = 233 subjects with 334 datasets) to delineate the spatiotemporal dynamics of amygdala functional connectivity development during the first 2 years of life. Their relationships with 4-year emotional (i.e., anxiety and inhibitory self-control parent report measures) and cognitive (i.e., IQ) behavioral outcomes were also assessed using multivariate modeling.
Our results revealed nonlinear growth of amygdala functional connectivity during the first 2 years of life, featuring dramatic synchronization during the first year followed by moderate growth or fine tuning during the second year. Importantly, functional connectivity growth during the second year had significant behavioral implications exemplified by multiple significant predictions of 4-year emotional and cognitive developmental outcomes.
The delineation of the spatiotemporal dynamics of amygdala functional connectivity development during infancy and their associations with 4-year behavioral outcomes may provide new references on the early emergence of both typical and atypical emotion processing capabilities."